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Eigenmode super-resolution imaging in arbitrary optical systems
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We investigate optical super-resolution by means of eigenmode decomposition in arbitrary imaging systems. This
technique is applicable for arbitrary objects but requires a knowledge of the eigenmodes of the imaging system. We
outline a reconstruction technique that can be applied even to systems in which the eigenmodes are not orthogonal, and
we present numerical simulations of eigenmode super-resolution in systems with resolution limited both by diffraction
and by aberrations. Our results indicate that optical super-resolution by direct eigenmode decomposition provides a
versatile method of sub-diffraction and distortion-free imaging in arbitrary optical systems.
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1. Introduction
Imaging is one of the most basic and fundamental tools in
science, having nearly countless applications across chem-
istry, biology, physics and engineering. While the limit to
imaging resolution was originally considered the Abbe
diffraction limit [1], it is now well known that sub-diffraction
imaging is possible. Super-resolution techniques, a blanket
term for all imaging methods capable of overcoming the
diffraction limit, have been of great interest ever since being
first introduced in the 1960s [2,3]. Various super-resolution
techniques have since been introduced, such as near field
imaging with hyperlenses [4–7], non-linear fluorescence
imaging [8–10], super-oscillatory lenses [11], compressive
sensing [12,13], and quantum imaging protocols [14,15].
In practical terms, however, super-resolution techniques are
quite limited. It would be advantageous to be able to super-
resolve arbitrary samples without complex apparati, in the
presence of real world conditions such as turbulence, im-
perfect optics and diffraction.

Optical eigenmodes [16–19] provide a method to real-
ize super-resolution without non-linear optical techniques
or specialized imaging systems. Furthermore, eigenmodes
provide an inherently robust technique, capable of imaging
through aberrations and diffraction. If the eigenmodes of a
system are known, images transmitted through the system
can be decomposed into their component eigenmodes. By
compensating for the attenuation and phase shift of the
individual modes, a super-resolved image can be recon-
structed. This form of eigenmode imaging, and its extension
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to singular value decomposition, was originally considered
infeasible due to computational costs and lack of a means
for determining the eigenmodes of a system [20]. Further
developments have thus focused on indirect methods, espe-
cially scanning microscopy [21] and the use of pupil–plane
masks [22].

Recently we have experimentally demonstrated the feasi-
bility of eigenmode super-resolution imaging in the special
case where the eigenmodes are known analytically [23].
Here, we show how to determine the eigenmodes of an arbi-
trary optical system using the same technology, and utilize
them for sub-diffraction and aberration tolerant imaging.
We demonstrate the technique in diffraction-limited and
aberrated systems with numerical simulations and show
the viability of direct decomposition in modern imaging.
We refer to this technique as eigenmode super-resolution
imaging as it provides an increase in resolution, whether
applied to sub-diffraction or aberration-free imaging. Op-
tical eigenmodes also enable experimental examination of
the ultimate limits to resolution imposed by the quantum
nature of light [19], and form a natural basis for other
optical processes such as optical quantum key distribution,
or ultrafast lithography.

2. Theory
An eigenmode travels through an optical system unchanged
except for attenuation and a phase shift. If an image can be
decomposed into its constituent eigenmodes, this
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attenuation and phase shift can be undone, and the original
image can be reconstructed. In order to perform eigen-
mode super-resolution imaging, it is thus imperative that
the eigenmodes of the system be known.

The propagation of an image through a linear optical
system can be described in terms of a matrix multiplication
mapping input fields to output fields. Finding the eigen-
modes of the optical system is then equivalent to finding the
eigenvectors of the system’s characteristic matrix. To obtain
the matrix, envision an arbitrary imageΨ as a superposition
of complex fields that form a complete basis, i.e.

Ψ =
∑

n

cnψn, (1)

where the {ψn} form a complete basis for the input and out-
put complex fields and the {cn} are the complex coefficients
that describe the test field in terms of the chosen basis. The
output complex field can also be decomposed over the same
orthogonal basis using an inner product, which is calculated
by an overlap integral.

The overlap of two complex fields X and Y is given by

⟨X, Y ⟩ =
∫

D

X Y ∗ dσ, (2)

where D is the total area spanned by the detector and dσ
represents the differential area [24]. For pixelated detectors,
this can also be written as a finite sum. The use of either
continuous or discrete detectors will not affect any of the
following discussion, except in that the space of possible
modes is finite for finite detectors.

The complete transmission matrix T characterizing the
optical system can then be found by sending the basis fields
through the system sequentially and decomposing the out-
put into those terms. The components of the final matrix are

Ti j = ⟨S[ψi ],ψ j ⟩, (3)

where S[ψi ] represents the output when the field ψi is inci-
dent on the optical system. Since the inner product requires
the complex field at the output and not only the intensity, for
an experimental implementation of this technique, a method
of phase recovery is necessary. A versatile method of phase
recovery is outlined in [25], relying on interference with a
reference wave. The test mode characterization can be car-
ried out through the use of spatial light modulators, where
the reference wave can be directly written on the spatial light
modulator along with the test mode [23]. Only recently has
a full characterization of the transmission matrix become
possible [25].

After determining the transmission matrix, we obtain its
eigenvalues and eigenvectors using standard numerical tech-
niques. The solutions to the eigenvalue equation Tϕi =
λiϕi , where ϕi is the i th eigenvector and λi its eigenvalue,
represent eigenmodes in the original basis as

Φi =
N∑

j=1

ϕi jψ j , (4)

where N is the number of eigenmodes, ϕi j is the j th com-
plex element of the eigenvector, and Φi is the eigenmode.
See Figure 1 for some examples. Note that alternatively
singular value decomposition could be utilized instead [17],
in which case the output image must be decomposed over
the right singular vectors and reconstructed over the left
singular vectors, at an increased computational cost.

While our previous work has focused on the case of
orthogonal eigenmodes, the existence of a normal transmis-
sion matrix is not guaranteed [26]. It is nevertheless possi-
ble to extend the technique to the case of non-orthogonal
eigenmodes (singular vectors are automatically orthogo-
nal). Consider the transmission of an arbitrary input field
A, called the object, through the optical system. We express
A in the eigenmode basis as

A =
N∑

i=1

aiΦi , (5)

where A is the object, {Φi } are the eigenmodes, and {ai }
are the coefficients that define the object. Since eigenvec-
tors are linearly independent, this representation is unique.
The transmission of this object through the optical system
(B = S[A]) is

B =
N∑

i=1

λi aiΦi . (6)

Each eigenmode Φi is attenuated and phase shifted by a
potentially complex λi independently of the other compo-
nents.

We want to determine the coefficients ai from the output
image. By considering the overlap of the output field B
with the eigenmode Φ j , the following linear equation is
obtained:

〈
N∑

i=1

λi aiΦi ,Φ j

〉

= ⟨B,Φ j ⟩. (7)

In the case where the eigenmodes are orthogonal, as in
an aberration-free, diffraction-limited 4 f imaging system,
⟨Φi ,Φ j ⟩ = δi j , and thus ⟨B,Φ j ⟩ = λ j a j can be used to
obtain the object coefficients directly, since λi and Φi are
known. The 4 f system, however, is a special case, and in
general the eigenmodes of a system will not be orthogonal.
In the non-orthogonal case it is instead necessary to consider
the full system of equations obtained from the overlap of
all eigenmodes with the complex field. For each eigenmode
Φ j the overlap equation can be expanded as:

λ1ϕ1 · ϕ j a1 + · · · + λNϕN · ϕ j aN = b · ϕ j = ⟨B,Φ j ⟩,
(8)
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Figure 1. Schematic of the modelled 4 f optical system and example eigenmodes. The object, central and image planes are separated by
two lenses of focal length f , with the distance between each plane and adjacent lens also f . The object and image plane have apertures
of radius R, and the central plane contains either a diffracting aperture or aberrations. Here, f = 1 m and R = 2 mm, while the light
has a wavelength of 633 nm. Also shown are the first, second, fifth and tenth eigenmodes of the system in the presence of astigmatism of
amplitude z = 100 rad across the simulation region. (The colour version of this figure is included in the online version of the journal.)

where b is the vector form of B in eigenmode basis. We can
express the entire system of equations as a matrix multipli-
cation:⎡

⎢⎣
λ1ϕ1 · ϕ1 · · · λNϕN · ϕ1

...
. . .

...

λ1ϕ1 · ϕN · · · λNϕN · ϕN

⎤

⎥⎦

⎡

⎢⎣
a1
...

aN

⎤

⎥⎦ =

⎡

⎢⎣
b · ϕ1

...

b · ϕN

⎤

⎥⎦ . (9)

This matrix multiplication can be more succinctly expressed
as:

ΛA = Γ, (10)

where Λ is the overlap of each eigenmode with each other
eigenmode, weighted by its eigenvalue, A is the object in
vector form and Γ is the overlap vector of the output with
the eigenmodes. By discarding eigenvectors with vanishing
eigenvalues, Λ is necessarily invertible (see
Appendix 1), and the set of coefficients ai can be found by
solving Equation (12).At that the set of coefficients ai define
the object A, every image gives a unique reconstructed
object.

To reduce the effect of noise on the reconstruction, we
choose to include only those eigenvectors whose corre-
sponding eigenvalues are above the noise threshold nthres:
λk ≥ nthres. The total number of eigenmodes used after
thresholding is then given by Nthres, with Nthres ≤ N .
Thus we solve a modified form of Equation (12) in
which we consider only the first Nthres modes, with Λ′

an Nthres × Nthres matrix, and both A′ and Γ ′ as column
vectors of length Nthres. Once this solution is obtained, it is
simple to build a reconstruction of the original image using
Equation (5) within the reduced space spanned by the Nthres
eigenmodes. Note this necessarily enforces the condition of

non-vanishing eigenvalues, and ensures invertibility. In the
case of pixelated detectors, there exists a hard cut-off of D
independent vectors, where D is the number of pixels, but
the results are otherwise unchanged.

The effect of discarding eigenmodes with transmission
below the noise threshold has been discussed in great detail
elsewhere; we refer the interested reader to [16,17,27–29]
for detailed discussions on the impact of this step on res-
olution. As we will show, in practice this step results in
increased resolution for a variety of typical images.

3. Numerical methods
To demonstrate the technique outlined above, we perform
simulations of an optical system containing diffracting aper-
tures or aberrations. The optical system we consider is a
4 f system with circular apertures in the object and image
planes and diffracting apertures or aberrations in the central
plane; see Figure 1. Unlike previous work, the eigenmodes
of these systems are not known analytically. Diffraction is
controlled by changing the size or shape of the diffracting
aperture, while aberrations are modelled by the Zernike
polynomials Z0

2, Z2
2, and Z−3

3 by controlling the amplitude
of the polynomial z [30].

We characterize the optical system using the Laguerre–
Gaussian (LG) basis {ψn} = {LGℓp} [31]. In our simula-
tions, a total of 121 LG modes are used to characterize the
optical systems, with indices −5 ≤ ℓ ≤ 5 and 0 ≤ p ≤ 10.
The basis functions must be chosen in order to adequately
probe all degrees of freedom of the optical system. In a
few special cases the degrees of freedom are analytically
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(a) (b) (c)

Figure 2. Numerical super-resolution results in the presence of a
diffracting square aperture of size 1 mm by 1 mm. 56 eigenmodes
are used in each reconstruction. (a) The original image propagated
through the 4 f system with a diffracting square aperture. (b) The
output image. (c) The super-resolved image.

Figure 3. Numerical eigenmode imaging results in the presence
of defocus of amplitude z = 48 rad across the simulation region.
59 eigenmodes are used in each reconstruction. (a) The original
images propagated through the aberrated system. (b) The output
images. (c) The reconstructed images.

known and appropriate basis functions can be chosen; in
general, choosing a basis which shares symmetry charac-
teristics with the system and using all modes with significant
transmission is sufficient. The closer the initial guess set of
test modes is to the eigenmodes, the fewer modes that need
to be tested. In order to obtain the same results as with 121
LG modes, approximately 900 plane waves have to be used
for the systems here.

Once the system is characterized, an image is propagated
through the optical systems and the object is reconstructed.
The super-resolution factor, defined as

Sr =
∣∣∣∣
⟨B ′, A⟩
⟨B, A⟩

∣∣∣∣
2

− 1, (11)

where B ′ is the reconstructed object, is then computed. The
super-resolution factor gives a dimensionless measure of
the image enhancement. When Sr > 0, it indicates that
the image has been super-resolved.Though super-resolution
strictly applies to sub-diffraction imaging, we will also use
Sr to quantify improvements in systems with aberrations,
and thus refer to reconstructed images for any system with
Sr > 0 as being super-resolved.

Figure 4. Numerical eigenmode imaging results in the presence
of astigmatism of amplitude z = 100 rad across the simulation
region. 49 eigenmodes are used in each reconstruction. (a) The
original images propagated through the aberrated system. (b) The
output images. (c) The reconstructed images.

Figure 5. Super-resolution factors Sr for reconstructed images
(object shown as inset) as a function of amplitude of astigmatism
z and the number of eigenmodes used to reconstruct, Nthres. The
red circle indicates the images in Figure 4 (colour online). (The
colour version of this figure is included in the online version of
the journal).

4. Results
Figure 2 shows super-resolution in the case of a diffracting
square aperture of size 1 mm × 1 mm. The original image
is shown in column (a), the diffracted output in column (b)
and the reconstructed image in column (c). This result is
obtained using 56 eigenmodes to perform reconstruction.
As reconstructions contain some obvious low-level noise
features, images are additionally thresholded above this
level (approximately 10% of total intensity). By compar-
ing the images in columns (b) and (c), clear and dramatic
increases in image quality can be seen. The super-resolution
factor is found to be Sr = 0.32. This improvement is clearly
significant enough to distinguish the object as a ring from
the super-resolved image, whereas such a clear conclusion
is impossible from the diffracted image. The eigenmodes are
found not to be orthogonal in this system, and thus this suc-
cessful reconstruction relies upon both Equation (12), and
the successful determination of the system’s eigenmodes.

Figure 3 shows results for a sample aberration, defocus
of magnitude z = 48 rad across the simulation region. The
original image is shown in column (a), the blurred output
in column (b) and the reconstructed image in column (c).
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These results are obtained using 59 eigenmodes to perform
reconstruction. For these images, Sr = 1.7 and Sr = 1.2
respectively. While some noise is introduced by the recon-
struction procedure, the main features of each image, which
are completely obscured in the blurred output, are restored.

Figure 4 shows results for astigmatism of magnitude
z = 100 rad across the simulation region. The original im-
age is shown in column (a), the blurred output in column (b)
and the reconstructed image in column (c). These results are
obtained using 49 eigenmodes to perform reconstruction.
Once again dramatic increases in image quality can be seen.
For these images, Sr = 1.3 and Sr = 1.0 respectively.

Figure 5 shows Sr for two images (inset) as a function of
the number of modes used to reconstruct and the magnitude
of astigmatism across the simulation region.As can be seen,
for each level of aberration there exists an optimal number
of modes to use in order to obtain the best super-resolution
factor. Since for different images the overlap with each
eigenmode will change, the number of eigenmodes used
to obtain the optimum super-resolution factor will vary de-
pending on the image. However an operating point Nthres
can always be chosen such that both images are super-
resolved. Thus the technique of eigenmode super-resolution
is neither target nor system specific, and while results will
show varying degrees of improvement, improvement should
always be possible.

The freedom of choice in Nthres necessarily introduces
a degree of freedom in the reconstructed image. There is
therefore a trade-off of images reconstructed with too few
modes which are blurred and exhibit artefacts, and images
reconstructed with too many modes which are vulnerable to
noise amplification. Thus the limits to the quality of a recon-
structed image are set by the noise and the eigenmodes of
the system, meaning any system would require calibration
prior to use in order to determine an optimal operating point.

Different sources of noise will affect the ability to per-
form an accurate reconstruction in differing ways. For ex-
ample, one can be subject to noise in the characterization
stage or in the object transmission. The characterization
stage determines the eigenmodes and eigenvalues that are
used in the reconstruction, and it is crucial to calculate these
accurately. While a full analysis of the noise performance
is beyond the scope of this work, noise introduced at the
characterization stage is found to have a more significant
impact than noise introduced in the object transmission.

In a system purely limited by diffraction, the eigenmodes
are sufficient to compose any image, making noise the only
limit to super-resolution [18]. Moving to the reduced eigen-
mode basis in this case yields superior results, despite the
apparent discarding of information. If an eigenmode has
transmission below the noise threshold, the information in
this mode is already lost to noise and cannot be recovered by
this technique (or indeed any other). Reconstructing the pro-
jection of the image into the imaging system’s viable space
offers, in practise, a sufficiently improved image to enable

recognition of most features in the original image. In other
systems, such as a multi-mode fibre, the fundamental limits
are more pronounced, but eigenmode super-resolution may
still yield dramatic improvement.

5. Conclusions
In summary, we investigate eigenmode super-resolution in
the case of an arbitrary optical system. We show how to
find the eigenmodes of such a system and use them for
super-resolution in the case of non-orthogonal eigenmodes.
We furthermore numerically simulate and apply the tech-
nique to various systems, and we show significant improve-
ment is possible independent of the object. Future work will
focus on experimentally demonstrating eigenmode
imaging in systems where the eigenmodes are not known
analytically, and examining the quantum limits to resolu-
tion in such systems. Eigenmodes will also enable imaging
through turbulence, quantum key distribution through opti-
cal fibre, and form an optimal basis for lithography.
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Appendix 1. Supplementary information
In a system with non-orthogonal eigenmodes, in order for recon-
struction to give a unique solution, the equation

ΛA = Γ, (12)

must have a unique solution for A, the object, given any image Γ .
This condition is satisfied if the matrix

Λ =

⎡

⎢⎣
λ1ϕ1 · ϕ1 · · · λNϕN · ϕ1

...
. . .

...
λ1ϕ1 · ϕN · · · λNϕN · ϕN

⎤

⎥⎦ (13)

is invertible. We will now show that provided only non-vanishing
eigenmodes are considered, which is to say eigenmodes with non-
vanishing eigenvalues, this condition is satisfied. This condition
is automatically satisfied by the reduced form of Λ in the text.

We start by noting that a square matrix is invertible if it has full
rank. It suffices to show then that

rankΛ = N (14)

in order to prove the matrix is invertible.
The rank of a matrix is invariant under several important trans-

formations. Primarily, as the rank of matrix is equivalent to the
dimension of its column space, the rank is invariant under column
operations (scalar multiplication and addition of columns). This
allows us to state that

rankΛ = rank

⎡

⎢⎣
ϕ1 · ϕ1 · · · ϕN · ϕ1

...
. . .

...
ϕ1 · ϕN · · · ϕN · ϕN

⎤

⎥⎦ , (15)

provided that ∀i, λi ̸= 0.
Furthermore, for any matrix M ,

rankM = rankM∗ = rankMT, (16)

where M∗ denotes the scalar complex conjugate and MT the
transpose. We can then consider the rank of the conjugate matrix
from Equation (15).

The conjugated matrix can be written as the product of two
simpler matrices,

⎡

⎢⎣
ϕ1 · ϕ1 · · · ϕ1 · ϕN

...
. . .

...
ϕN · ϕ1 · · · ϕN · ϕN

⎤

⎥⎦ =
[
ϕ1 · · · ϕN

]T [
ϕ1 · · · ϕN

]
,

(17)
which are expressed in block column notation. We can then use
Sylvester’s rank inequality to state that

rankΛ ≥ rank
[
ϕ1 · · · ϕN

]T + rank
[
ϕ1 · · · ϕN

]
− N (18)

≥ 2 rank
[
ϕ1 · · · ϕN

]
− N , (19)

where we have used Equation (16) to remove the transpose.
Since the eigenvectors are by definition linearly independent,

the matrix
[
ϕ1 · · · ϕN

]
is composed entirely of linearly inde-

pendent columns. Thus its column space has dimension N , and
accordingly rank N . Substituting this into Equation (19),

rankΛ ≥ 2N − N , (20)
rankΛ = N , (21)

as the rank of a matrix cannot exceed its dimension. Thus Λ has
full rank and is invertible, guaranteeing the existence of a solution
to Equation (12) and that a unique object will be obtained for every
image.D
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